首页> 外文OA文献 >The effect of Fisher information matrix approximation methods in population optimal design calculations
【2h】

The effect of Fisher information matrix approximation methods in population optimal design calculations

机译:Fisher信息矩阵逼近方法在总体优化设计计算中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the increasing popularity of optimal design in drug development it is important to understand how the approximations and implementations of the Fisher information matrix (FIM) affect the resulting optimal designs. The aim of this work was to investigate the impact on design performance when using two common approximations to the population model and the full or block-diagonal FIM implementations for optimization of sampling points. Sampling schedules for two example experiments based on population models were optimized using the FO and FOCE approximations and the full and block-diagonal FIM implementations. The number of support points was compared between the designs for each example experiment. The performance of these designs based on simulation/estimations was investigated by computing bias of the parameters as well as through the use of an empirical D-criterion confidence interval. Simulations were performed when the design was computed with the true parameter values as well as with misspecified parameter values. The FOCE approximation and the Full FIM implementation yielded designs with more support points and less clustering of sample points than designs optimized with the FO approximation and the block-diagonal implementation. The D-criterion confidence intervals showed no performance differences between the full and block diagonal FIM optimal designs when assuming true parameter values. However, the FO approximated block-reduced FIM designs had higher bias than the other designs. When assuming parameter misspecification in the design evaluation, the FO Full FIM optimal design was superior to the FO block-diagonal FIM design in both of the examples.
机译:随着药物开发中最佳设计的日益普及,重要的是要了解费舍尔信息矩阵(FIM)的近似和实现方式如何影响最终的最佳设计。这项工作的目的是调查使用总体模型的两个通用近似值以及完整或块对角FIM实现来优化采样点时,对设计性能的影响。使用FO和FOCE近似以及完整和块对角FIM实现,优化了基于人口模型的两个示例实验的采样计划。比较了每个示例实验在设计之间的支持点数。通过计算参数偏差以及使用经验D准则置信区间,研究了基于仿真/估计的这些设计的性能。当使用真实参数值和错误指定的参数值计算设计时,将执行仿真。与使用FO近似和块对角实现优化的设计相比,使用FOCE近似和Full FIM实现产生的设计具有更多的支持点和更少的样本点聚类。当假设参数值为真值时,D准则置信区间显示完整和块对角FIM最佳设计之间没有性能差异。但是,FO近似的块减少FIM设计具有比其他设计更高的偏差。在设计评估中假设参数指定不正确时,在两个示例中,FO Full FIM最优设计均优于FO块对角FIM设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号